图像修复总结

图像修复(Image inpainting or Image complete )的目的是在给定一个mask的情况下,填充缺失区域的像素,使其整体达到纹理和结构一致性,或者语义和视觉可信。其应用范围十分广泛,如图像复原,图像编辑,图像去噪。图像修复本身就是一个高度病态问题,修复过程带有高度的主观性,比如专家修复艺术作品。现有的大多数深度学习方法将图像修复视为一个条件生成问题,输入到输出的映射是一对多,最后生成的一个最优结果。然而该结果没有丰富的语义内容,可能生成的结果内容不一样了,但仍看似合理。

现有的图像方法可分为深度学习方法和非深度学习方法。

 

传统的图像修复方法大致可以分为两类,即基于补丁的方法和基于扩散的方法。基于面片的方法[2,12,32]尝试在清晰区域中找到最匹配的面片,以一块一块地填充缺失区域面片。另一方面,基于扩散的方法[16,36]尝试将结构和纹理等信息从边界逐渐传播到缺失区域的内部。这些方法基于一些假设:清除区域中存在相似的内容,或者遗漏区域的边界和内部的内容具有很强的连续性。这些假设决定了传统方法可以处理一些简单的实例,但不能处理包含复杂语义信息的图像

 

https://blog.csdn.net/baidu_33256174/article/details/101173444

文章标题:图像修复总结
文章链接:https://www.dianjilingqu.com/51531.html
本文章来源于网络,版权归原作者所有,如果本站文章侵犯了您的权益,请联系我们删除,联系邮箱:saisai#email.cn,感谢支持理解。
THE END
< <上一篇
下一篇>>